
Abstract. We present a matrix diagonalization method
where the diagonalization is carried out through a
normal Lagrange±Newton±Raphson method solved in a
subspace. The subspace is generated using the correction
vector that predicts the standard Lagrange±Newton±
Raphson formula in the full space. Some numerical
examples and the performance of the algorithm are
given.
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1 Introduction

Many physical and chemical problems require the
solution of the large-scale eigenvalue equation

HC � kC ; �1�
where H is a symmetric real matrix, C is the eigenvector
with the requirement that CTC � 1, and k is the
corresponding eigenvalue. Due to the large dimension
of the eigenvalue problem (Eq. 1), only iterative methods
have been developed which require a matrix±vector
product. All these iterative methods are based on the
Ritz±Galerkin algorithm [1], which solves the equation
under study in a subspace. The e�ciency of the methods
based on the Ritz±Galerkin technique depends on the
e�ciency of the construction of the subspace basis
vector. Within these types of methods the most popular
is the Davidson algorithm [2], though others methods
have also been developed [3±8]. These methods can be
seen as derivations of the Lanczos-type algorithm [9±11]
with a precondition [12±13].

Here we propose a large-scale diagonalization meth-
od based on the direct solution of the Lagrangian
function associated with the eigenvalue problem [14].
The algorithm can be applied to the evaluation of the
lower and higher roots.

2 Theory and computational details

The eigenvalue problem can be seen as the solution of
the stationary condition of the Lagrangian function [14]

L C; k� � � CTHCÿ k CTCÿ 1
ÿ �

; �2�
where the Lagrangian multiplier k, also called the
Raigleigh±Ritz quotient, is the corresponding eigenvalue
at the solution. Expanding Eq. (2) with respect to C and
k to second order and applying the stationary condi-
tions, we get

2HCÿ 2kC
ÿ CTCÿ 1
ÿ �� �

� ÿ 2Hÿ 2kI ÿ2C
ÿ2CT 0

� �
dC
dk

� �
; �3�

where I is the unit matrix. Equation (3) is the so-called
Lagrange±Newton±Raphson equation of Eq. (2) and
can be written in the following way:

HCÿ �k� dk�C � ÿ�Hÿ kI�dC �4a�
CTCÿ 1 � ÿ2CTdC : �4b�
If the C vector is normalized and its Raigleigh±Ritz

quotient is k � CTHC, from Eq. (4b) we get CTdC � 0
and from Eq. (4a) after some rearrangement we obtain
the improvement of both the Lagrangian multiplier, k,
and the C vector, i.e.,

dk � CT Hÿ kI� �ÿ1 HCÿ kC� �
CT Hÿ kI� �ÿ1C �5�

dC � ÿ Hÿ kI� �ÿ1 HCÿ �k� dk�C� � : �6�Correspondence to: J.M. Bo®ll
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Equations (5) and (6) were derived by Olsen et al. [4]
and Bo®ll and Anglada [7]. From these equations a new
Lagrangian multiplier, k k� dk, and C vector,
C C� dC, are obtained. Equations (4)±(6) are the
bases of the Lagrange±Newton±Raphson algorithm to
solve the eigenvalue equation (Eq. 1).

In order to introduce stability into the preceding al-
gorithm, we use the Ritz±Galerkin technique [1], i.e., Eq.
(4a) is solved in a subspace of an orthonormal basis
generated by the set of vectors dC that are evaluated at
each iteration using Eq. (6). The outline of the algorithm
is as follows:

1. Begin with a normalized vector C0 and the corre-
sponding HC0. Store both vectors. Set i � 1.

2. Compute the Raigleigh±Ritz quotient ki � CT
i HCi

and the residuum vector ri � HCi ÿ kiCi.
3. Compute an improvement to both the Raigleigh±Ritz

quotient and the Ci vector using slightly modi®ed
versions of Eqs. (5) and (6):

dki � CT
i HD ÿ kiI� �ÿ1ri

CT
i HD ÿ kiI� �ÿ1Ci

�7�

dCi � ÿ HD ÿ kiI� �ÿ1 ri ÿ dkiCi� � ; �8�
where HD is the diagonal part of the H matrix.

4. Perform a Gram±Schmidt orthonormalization of the
dCi vector. With the corresponding orthonormalized
vector, qi, compute Hqi. Store both vectors in the
matrices Qi � �Qiÿ1jqi� and HQi � �HQiÿ1jHqi�.

5. Solve the Lagrange±Newton±Raphson equation (Eq.
4a) in the subspace de®ned by the set of orthonormal
vectors fqjgi

j�1.

QT
i HCi ÿ ki � dki� �Ci� � � ÿQT

i HCi ÿ kiI� �Qiai ; �9�
where the ai vector is trivially computed in the fol-

lowing way

ai � ÿ QT
i HCi ÿ kiI� �Qi

� 	ÿ1
QT

i HCi ÿ ki � dki� �Ci� � :
�10�

6. If the norm of the vector gi � QT
i �HCi ÿ �ki � dki�Ci�,

i.e., the gradient vector in the subspace, is smaller
than a given threshold, �gTi gi�1=2 � e, convergence has
been reached, otherwise compute the improved vector
C0i � Ci �Qiai. Normalize C0i, i.e., Ci�1 � NC0i,
where N is the normalization factor. Compute
HCi�1 � N�HCi �HQiai� and store both Ci�1 and
HCi�1. Set i � i� 1 and go to step 2.

Note that if the convergence is reached after i itera-
tions the number of the HC vector evaluations is i� 1.
The algorithm only needs to store three vectors in the
high-speed memory, Ci, HCi and HD. Finally we say
that Eq. (9) results from the projection of Eq. (4a) into
the subspace spanned by the set of the vectors fqjgi

j�1,
i.e., the set of column vectors that de®ne the matrix Qi.
In this subspace dCi � Qiai. We call this algorithm
LNR.

It is possible to introduce the variance minimization
technique [3, 8, 15] into the above algorithm. The vari-

ance minimization technique forces the convergence to
the eigenpair with the eigenvalue nearest the initial
Raigleigh±Ritz quotient [16]. In this case step 6 is
modi®ed in the following way. If the convergence crite-
rion is not satis®ed then minimize

bi
1 b

i
2

ÿ �
CijCi �Qiai� �T Hÿ ki � dki� �I� �

� Hÿ ki � dki� �I� � CijCi �Qiai� � bi
1

bi
2

 !
�11�

subject to the restriction

bi
1 b

i
2

ÿ �
CijCi �Qiai� �T CijCi �Qiai� � bi

1

bi
2

� �
� 1 : �12�

Compute the improved vector C0i � bi
1Ci � bi

2�Ci �Qiai�
and proceeding as before normalize it obtaining the
new Ci�1. In the same way compute the vector
HCi�1 � N bi

1HCi � bi
2H

� �Ci �Qiai�� and continue as
described above. This LNR algorithm coupled with the
variance minimization technique is labeled LNRV.

3 Performance and numerical examples

We have performed three di�erent numerical tests to
illustrate the algorithms presented above. First, we have
considered the negative scaled Hilbert matrix

Hij�c� �
ÿ1

2iÿ 1 if i � j
ÿ1

c�i� jÿ 1� if i 6� j

�
�13�

taking c � 10 and a dimension of 100 000, second the
50� 50 Ra�enetti matrix [17], which despite its small
dimension is very di�cult to diagonalize, and ®nally we
have studied the 12B2 and 32B2 electronic states of
CH�2 using a full con®guration interaction (FCI) wave
function correlating the ®ve valence electrons. The
molecular parameters are the bond distance C·H =
1.120 AÊ and the bond angle H·C·H = 101.8�. The
basis set is the same as used in Ref. [18], namely
(9s5p1d)/[4s2p1d] for C and (4s1p)/[2s1p] [19] for H. The
dimension of the FCI is 176264 Slater determinants. The
FCI calculations were carried out using the program
described in Ref. [20].

The ®rst four eigenvalues of the Hilbert matrix, the
®rst six eigenvalues of the Ra�enetti matrix, and the ®rst

Table 1. The ®rst lower eigenvalues of the Hilbert, Ra�enetti and
full con®guration interaction (FCI) matrices

Root Hilberta Ra�enettib FCIc

1 )1.009610 0.033608 )38.483502
2 )0.353981 0.143251
3 )0.200494 0.251975 )38.147909
4 )0.154196 0.362343
5 2.349421
6 10.349958

a The dimension of the Hilbert matrix is 100 000
bThe dimension of the Ra�enetti matrix is 50
c The dimension of the FCI matrix is 176264. This FCI corresponds
to the electronic structure calculation of CH�2 in C2V symmetry.
The values are given in atomic units. The ®rst eigenvalue corre-
sponds to the 12B2 electronic state and the third eigenvalue is the

32B2 electronic state
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and third eigenvalues of the FCI matrix are given in
Table 1. All the roots presented in Table 1 were opti-
mized using the LNR and LNRV methods. With the aim
of making comparisons, another method was used, the
so-called crude LNR (cLNR), i.e. the LNR method
without the construction of the orthonormal subspace.
In this algorithm the new C vector is built by adding the
correction vector obtained from Eq. (8) to the current
C vector. The square root of the HCÿ kC vector norm
was taken as the convergence criterion.

The number of iterations needed by the above algo-
rithms to converge to roots considered in Table 1 is
shown in Table 2. The convergence criterion was taken
as e � 10ÿ4. Except for some roots, as discussed later,
the initial vector was taken as the unit vector with the 1
placed in the more important component of the desired
converged eigenvector.

The convergence performance of the cLNR method is
very poor since it converges only for the ®rst and second
roots of the Hilbert matrix. In other cases it tends to
converge to other roots or does not converge. This
manifestly reveals the very well know fact that the Ritz±
Galerkin technique [1] introduces stability into the
diagonalization process.

The other two methods, LNR and LNRV, converge
very well and show similar behavior except for the op-
timization of roots 3, 4, and 5 of the Ra�enetti matrix
and root 4 of the Hilbert matrix. For these four roots the
LNR method does not converge to the desired eigen-
pairs. This result can be explained by looking at Table 3,
where the ®rst six components of the eigenvectors cor-
responding to the six lowest eigenvalues of the Ra�enetti

matrix are shown. Starting with an initial vector whose
components 3 and 4 are ÿ0:707 and 0.707, respectively,
the LNR method converges to the third root within 11
iterations. Proceeding in a similar way, if the composi-
tion of the initial vector is ÿ0:53 and 0.88 at positions 4
and 5 the LNR method converges to the fourth root
using the same number of iterations. Finally, selecting
the initial vector such that components 2±5 are equal to
0.5 then the LNR method converges to root 5 within 11
iterations. On the other hand, the LNRV method con-
verges to roots 3 and 4 starting with the corresponding
initial unit vector and employing only ten iterations. For
root 5 the starting vector was 0.707 and 0.707 at com-
ponents 4 and 5, respectively. With this initial vector the
LNRV method converges to this root after nine itera-
tions. For root 5, the selection of this initial vector rather
than the unit vector is obvious by looking at column 6 of
Table 3. In this case is not possible to start with the unit
vector to converge to this root.

Finally, for the FCI case the starting vector has six
components di�erent to zero, which correspond to the
four con®guration state functions describing the four
lowest electronic states of 2B2 symmetry. For the lowest
state, Table 2 shows that convergence is reached with
ten iterations using the LNR method and 11 iterations
using the LNRV method. On the other hand, the third
state has two main components in its wave function with
coe�cients 0.84 and 0.25. In this case both methods
converge after the same number of iterations, 21. In
order to check the convergence behavior of these
methods we also performed a further diagonalization for
this third state using as the initial vector a unit vector
where the 1 is placed in the component of the highest
weight in the ®nal FCI eigenvector. With this starting
vector, both LNR and LNRV methods converge to the
desired root with 20 and 30 iterations, respectively.

4 Conclusions

We have presented a large-scale diagonalization method
based on the direct solution of the Lagrange±Newton±
Raphson equation in the iterative subspace. This
subspace is built using the correction vector obtained
from the Lagrange±Newton±Raphson formula in the
full space. This algorithm can even be used to optimize
high roots starting with only one vector. The coupling of
this algorithm with the variance minimization technique
does not improve the number of iterations needed to
reach convergence. The real improvement of the vari-
ance minimization technique merely consists of converg-
ing to the eigenpair with the eigenvalue closer to the

Table 2. Number of iterations needed to optimize the di�erent
eigenvalues of the Hilbert, Ra�enetti and FCI matrices given in
Table 1 using the cLNR, LNR and LNRV methods. The normal-
ized initial vector was the unit vector with the 1 placed in the most
important component of the desired eigenvector. The convergence
criterion was e = 10)4

Root Hilbert Ra�enetti FCI

1 2 3 4 1 2 3 4 5 6 1 3

cLNR 7 25 a a b b b b b b b b

LNR 4 7 10 11c 8 9 11d 11d 11d 5 10d 20 (21)e

LNRV 4 7 9 10 8 11 10 10 9d 8 11d 30 (21)e

a It converges to the second root
bNo convergence is reached within 30 iterations
c It converges to higher root
d The initial vector is not the unit vector. See text for more details
e The number of iterations needed to converge using an initial
vector di�erent to the unit vector is given in parentheses. See text
for more details

Table 3. The ®rst six compo-
nents of the eigenvectors
associated with the ®rst six
eigenvalues of the Ra�enetti
matrix. The dimension of the
Ra�enetti matrix is 50

Root 0.033608 0.143251 0.251975 0.362343 2.349421 10.349958

1 0.869918 )0.226516 )0.131669 )0.086303 0.349186 0.032651
2 )0.440358 )0.750236 )0.218307 )0.119200 0.411710 0.032970
3 )0.175707 0.571800 )0.638333 )0.192624 0.430865 0.033294
4 )0.109749 0.207012 0.690829 )0.501601 0.451889 0.033626
5 )0.079795 0.126384 0.224132 0.830412 0.475069 0.033964
6 )0.002933 0.003292 0.003403 0.003245 )0.121051 0.965650
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initial Raigleigh±Ritz quotient even if one starts with a
very poor initial vector.
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